Network Bar

domenica 21 maggio 2017

Dinasauri con le piume: Jianianhualong tengi

Non avrei scritto nemmeno una riga se no fosse stato per la puntata del Le grandi domande della vita sull’uovo e la gallina. Però, visto che in qualche modo dovevo recuperare la puntata del venerdì (che non è andata on-line per scarsa voglia dello scrivente…), allora ho deciso di recuperare la ricostruzione del Jianianhualong tengi fatta da Julius T. Csotonyi.
Questa nuova specie di dinosauro che assomiglia un po’ a un velociraptor con le piume (e senza sguardo criminale!): in effetti appartiene al sottogruppo dei microraptoria all’interno della famiglia dei dromaeosauridi, la stessa dei velociraptor (diciamo che sono in qualche modo cugini), ed è uno di quei dinosauri con le piume che potrebbe costituire uno dei vari passaggi che ha portato agli uccelli attuali. Ovviamente l’importanza del ritrovamento va al di là del dettaglio piumato che in questa sede mi interessa, pertanto invito i lettori a dare un’occhiata all’articolo su Nature Communications.

martedì 16 maggio 2017

I cieli di Brera: Homo sapiens nello spazio

Domani Stefano Sandrelli discuterà di conquista dello spazio per la seconda conferenza de I cieli di Brera. Appuntamento alle 18:00 presso la Sala della Passione della Pinacoteca nel Palazzo Brera, via Brera 28.
Qui sotto ben due abstract, quello di testo e quello video, girato da Laura Barbalini:
L'Homo sapiens ha conquistato lo spazio, prima volando in atmosfera, poi orbitando intorno al pianeta. E schiudendo le porte agli studi scientifici in assenza di peso. Ma non è certo stata la prima specie a farlo ne’ la più numerosa. Fra passato e presente, guardando al futuro, cercheremo di scoprire la scienza dell’uomo e dei suoi colleghi animali che lo hanno preceduto e accompagnato nello spazio. Con molta ironia.

venerdì 12 maggio 2017

Le grandi domande della vita: da Zermelo a Planck

Tra domande improbabili e argomenti seri in questa puntata scendiamo nelle fondamenta della matematica (ancora una volta!) e della fisica, partendo da...
La teoria degli insiemi
Nel 1908, Ernst Zermelo propose un primo insieme di assiomi per la teoria degli insiemi, ma, come scritto nel 1921 da Abraham Fraenkel in una lettera allo stesso Zermelo, questa prima proposta risultava incapace di mostrare l’esistenza di alcuni tipi di insiemi o l’esistenza dei numeri cardinali.
A partire dal lavoro di Zermelo, nel 1922 Fraenkel e, indipendentemente, Thoralf Skolem svilupparono un nuovo sistema costituito da 8 assiomi che, insieme con l’assioma della scelta, costituiscono i così detti assiomi di Zermelo-Fraenkel e la base per la teoria degli insiemi e per la matematica tutta.
Nonostante i teoremi di incompletezza di Kurt Godel, che mostrano come in questo sistema esistano delle affermazioni indecidibili (ovvero di cui non è possibile valutare la verità o la falsità), la teoria degli insiemi di Zermelo-Fraenkel continua ad avere un’importanza essenziale nella matematica moderna, soprattutto per motivazioni storiche: tale sistema è in effetti la sintesi del lavoro di molti matematici e logici, tra cui non si può dimenticare Bertrand Russell, che accettarono la sfida di David Hilbert di risolvere l’ipotesi sull’infinito di Georg Cantor e di assiomatizzare in maniera completa la matematica. Questi sforzi, che alla fine portarono alla comprensione che non esisterà mai un sistema di assiomi che rende la matematica completa, continuarono comunque anche dopo l’accettazione della teoria ZFC, come ad esempio la teoria degli insiemi di Tarski–Grothendieck sviluppata da Alfred Tarski e Alexander Grothendieck(1).

mercoledì 10 maggio 2017

Longitudine

Alle origini degli Osservatori Astronomici non c’è la verifica della legge di gravitazione di Isaac Newton, ma un problema molto più concreto: la determinazione della longitudine.
Campagne militari

John Harrison
La Terra è una sfera, cosa abbastanza nota (a parte qualche buontempone qua e là) sin dall’antica Grecia. Essa viene convenzionalmente suddivisa in 24 spicchi, ognuno largo 15°. Questo vuol dire che, conoscere l’angolo rispetto a un meridiano di riferimento, vuol dire conoscere la propria posizione sul globo, anche in considerazione del fatto che determinare la latitudine è molto più semplice grazie alla posizione del Sole o alla lunghezza del giorno o alla posizione delle stelle note sull’orizzonte.
Tale informazione (lo propria posizione sulla superficie terrestre) assume un’importanza essenziale sia per i commerci sia per le campagne militari, non solo sulla terra ma anche sul mare. Il problema è che determinare tale posizione è stato per molti secoli piuttosto complicato, almeno fino a che regnanti della Gran Bretagna non decisero di istituire un premio per risolvere l’annoso problema della longitudine.
Le strade che vennero intraprese furono due, una che volgeva il suo interesse verso il cielo, l’altro verso l’utilizzo di strumenti di misurazione del tempo. Nel primo caso, fino all’istituzionalizzazione della sfida, lo strumento migliore a disposizione era il sestante. Il suo utilizzatore, però aveva la necessità di conoscere i cieli, cosa non così scontata, e fu proprio per ovviare al problema che vennero istituiti i primi Osservatori Astronomici: il loro scopo era determinare le mappe del cielo nel modo più preciso possibile, in modo tale che la misurazione della posizione apparente di quelle stesse stelle in un’altra porzione del globo permettesse di determinare, attraverso le differenze, la posizione rispetto ai dati pubblicati sull’Almanacco di Greenwich. Questo divenne l’almanacco più utilizzato non solo per la forza della marina inglese dell’epoca, ma anche grazie al lavoro certosino dei vari Astronomi Reali che si sono succeduti alla guida dell’Osservatorio Reale di Greenwich, a partire da John Flamsteed, il primo, fino al reverendo Nevil Maskelyne, il cui impegno in particolare portò alla diffusione degli Almanacchi Astronomici e che potrebbe essere considerato il “cattivo” della storia.
Maskelyne, infatti, fu un grande fautore del metodo celeste per la determinazione della longitudine contro la misurazione del tempo. Consideriamo che l’unico modo che all’epoca si riteneva valido per determinare l’ora sul mare era il pendolo, che però risentiva dei cambiamenti climatici e, in minima parte, anche dei movimenti della nave causati dalle onde del mare. Poiché ogni minimo errore rischiava di modificare di molto la posizione calcolata rispetto a quella reale, misurare la longitudine attraverso il tempo implicava migliorare e di molto gli strumenti di misurazione del tempo: gli orologi.

sabato 6 maggio 2017

Le grandi domande della vita: speciale Ridi Topolino

Puntata uscita con un giorno di ritardo: la lettura prima di tutto. E poi dovevo anche smettere di ridere!
Ritorna in edicola la mitica Ridi Topolino, con una raccolta speciale di alcune delle storie inedite uscite sul bimestrale e realizzate da Tito Faraci e Giuseppe Ferrario. Se Panini ci delizierà ancora una volta con questa rivista, solo il tempo ce lo dirà, ma è certo che è stata di ispirazione non solo per la carriera fumettistica di un tale di nome Sio, ma anche questa puntata de Le grandi domande della vita (e forse in qualche angolino del mio cervello anche della rubrica stessa!).
1+1

da Ridi Topolino #3
Come abiamo già visto, ci sono volute 300 e più pagine a Bertrand Russell e Alfred North Whitehead per dimostrare che $1+1=2$. Questo è un esercizio abbastanza complicato quando si vuole scendere nelle profondità del mare matematico, oppure ecessivamente banale quando, alla domanda, si fornisce la risposta, perché $2$ è definito come $1+1$. Una dimostrazione, che forse nonavrà la completezza formale di quela di Russell, ma che è anche didatticamente utile, può tranquillamente utilizzare i postulati del matematico italiano Giuseppe Peano(1):
  1. $1$ è un numero appartenente a $N$
  2. Se $x$ è un numero in $N$, allora il suo sucessore $x'$ è in $N$
  3. Non esiste alcun $x$ tale che $x' =1$
  4. Se $x$ non è $1$, allora esiste un $y$ in $N$ tale che $y' = x$
  5. Se $S$ è un sotoinsieme di $N$, $1$ è in $S$, e l’implicazione $X \in S \Rightarrow x' \in S$ è vera, allora $S=N$
Allora si definisce ricorsivamente la somma:
Siano $a$, $b \in N$. Se $b=1$, allora, utilizzando i postulati 1 e 2, $a+b = a'$. Se $b$ è diverso da $1$, alora sia $c' = b$, con $c \in N$ (dal postulato 4), e per definizione $a+b=(a+c)'$.
llora devi definire $2 = 1'$.
Dalla sua definizione e dai postulati 1 e 2, segue che $2 \in N$.
Possiamo allora dimostrare che $1+1=2$:
Prendiamo la definizione della somma e applichiamola al caso in cui $a=b=1$: \[1+1=1'=2\]
Esiste una formulazione differente dei postulati di Peano che sostituisce l'$1$ con lo $0$ nei postulati 1, 3, 4, 5. Questo costringe a modificare la definizione della somma:
Siano $a$, $b \in N$. Se $b=0$, allora per definizione $a+b = a$. Se $b$ è diverso da $0$, allora sia $c' = b$, con $c \in N$, e per definizione $a+b=(a+c)'$.
Quindi si definiscono $1 = 0'$, e $2 = 1'$. La dimostrazione del teorema sulla somma delle due unità diventa leggermente differente:
Utilizzando la seconda parte della definizione della somma si ottiene: \[1+1=(1+0)'\] e utilizzando la prima parte nelle parentesi si ottiene: \[1+1=(1)'=1'=2\]